
Ask Your Cryptographer if 
Context-Committing AEAD Is Right for You
Mihir Bellare, John Chan, Paul Grubbs, Viet Tung Hoang, 
Sanketh Menda, Julia Len, Thomas Ristenpart, and Phillip Rogaway

Authenticated Encryption with Associated Data (AEAD)

Sender Recipient

2

Authenticated Encryption with Associated Data (AEAD)

K, N, A K, N, A
Context:

• Key K

• Nonce N (e.g., random IV or counter)

• Associated data A (e.g., network header)

Sender Recipient

2

Shared out of band.

Authenticated Encryption with Associated Data (AEAD)

C = AEAD.Enc(K,N,A,M)

K, N, A K, N, A
Context:

• Key K

• Nonce N (e.g., random IV or counter)

• Associated data A (e.g., network header)

Sender Recipient

2

Shared out of band.

Authenticated Encryption with Associated Data (AEAD)

C = AEAD.Enc(K,N,A,M)

K, N, A K, N, A
Context:

• Key K

• Nonce N (e.g., random IV or counter)

• Associated data A (e.g., network header)

Sender Recipient

2

Standardized

1. AES-GCM

2. ChaCha20/Poly1305

3. AES-GCM-SIV

Shared out of band.

Authenticated Encryption with Associated Data (AEAD)

C = AEAD.Enc(K,N,A,M)

K, N, A K, N, A
Context:

• Key K

• Nonce N (e.g., random IV or counter)

• Associated data A (e.g., network header)

Sender Recipient

2

Standardized

1. AES-GCM

2. ChaCha20/Poly1305

3. AES-GCM-SIV

Provably Secure

1. Confidentiality

2. Authenticity

Meddler-in-the-middle

Can observe and manipulate.

Shared out of band.

Recent Attacks on AEAD

3

Recent Attacks on AEAD

3

Recent Attacks on AEAD

3

Recent Attacks on AEAD

3

Recent Attacks on AEAD

3

Recent Attacks on AEAD

3

These attacks work in new threat models!

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]

Sender

Recipient A

Recipient B

4

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]

N,A,C

Sender Ciphertext
Distributor

Recipient A

Recipient B

4

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]

N,A,C

N,A,C

Sender Ciphertext
Distributor

Recipient A

Recipient B

4

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]

N,A,C

N,A,C

N,A,C

Sender Ciphertext

Distributor

Recipient A

Recipient B

4

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K

N,A,C

N,A,C

N,A,C

Sender Ciphertext

Distributor

Recipient A

Recipient B

4

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K

N,A,C

N,A,C

N,A,C

Sender Ciphertext

Distributor

Recipient A

Recipient B

4

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K

N,A,C

K

N,A,C

N,A,C

Sender Ciphertext

Distributor

Recipient A

Recipient B

4

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K

N,A,C

K

N,A,C

N,A,C

Sender Ciphertext

Distributor

Recipient A

Recipient B

4

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K

N,A,C

K

N,A,C

N,A,C

Sender Ciphertext

Distributor

Recipient A

Recipient B

4

Distributor expects same plaintext received

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K

N,A,C

K

N,A,C

N,A,C

Sender Ciphertext

Distributor

Recipient A

Recipient B

4

Distributor expects same plaintext received

Smile indicates intended behavior.

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]

Malicious Sender Ciphertext
Distributor

Recipient A

Recipient B

5

Distributor expects same plaintext received

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]

Malicious Sender Ciphertext
Distributor

Recipient A

Recipient B

5

Distributor expects same plaintext received

N,A,C

N,A,C

N,A,C

Red text indicates attacker controlled.

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K1

Malicious Sender Ciphertext
Distributor

Recipient A

Recipient B

5

Distributor expects same plaintext received

N,A,C

N,A,C

N,A,C

Red text indicates attacker controlled.

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K1

K2

Malicious Sender Ciphertext
Distributor

Recipient A

Recipient B

5

But malicious sender can arrange for different plaintexts to be received!

Distributor expects same plaintext received

N,A,C

N,A,C

N,A,C

Red text indicates attacker controlled.

Threat #1: Multi-Recipient Integrity [FOR17, GLR17]
K1

K2

Malicious Sender Ciphertext
Distributor

Recipient A

Recipient B

5

But malicious sender can arrange for different plaintexts to be received!

Distributor expects same plaintext received

N,A,C

N,A,C

N,A,C

Red text indicates attacker controlled.

Sobbing indicates unintended behavior.

In-use AEAD schemes are not key committing [FOR17, GLR17]

6

For AEAD = XXX computationally efficient to find

	 	 K1 ≠ K2 and N, A, C

such that decryption

	 	 M1 = AEAD.Dec(K1,N,A,C)

	 	 M2 = AEAD.Dec(K2,N,A,C)

succeeds and M1 ≠ M2

In-use AEAD schemes are not key committing [FOR17, GLR17]

6

For AEAD = XXX computationally efficient to find

	 	 K1 ≠ K2 and N, A, C

such that decryption

	 	 M1 = AEAD.Dec(K1,N,A,C)

	 	 M2 = AEAD.Dec(K2,N,A,C)

succeeds and M1 ≠ M2

XXX Attack Citation
AES-GCM [GLR17]
ChaCha20/Poly1305 [LGR20]
AES-GCM-SIV [Sch20, LGR20]
AES-OCB3 [ADGKLS20]
AES-SIV [MLGR23]
XSalsa20/Poly1305 [LGR20]

In-use AEAD schemes are not key committing [FOR17, GLR17]

6

For AEAD = XXX computationally efficient to find

	 	 K1 ≠ K2 and N, A, C

such that decryption

	 	 M1 = AEAD.Dec(K1,N,A,C)

	 	 M2 = AEAD.Dec(K2,N,A,C)

succeeds and M1 ≠ M2

XXX Attack Citation
AES-GCM [GLR17]
ChaCha20/Poly1305 [LGR20]
AES-GCM-SIV [Sch20, LGR20]
AES-OCB3 [ADGKLS20]
AES-SIV [MLGR23]
XSalsa20/Poly1305 [LGR20]

Attacks are fast and

practically damaging

Threat #1: Invisible Salamanders Attack [DGRW19]

Facebook

Recipient

Moderator

7

Malicious Sender

Threat #1: Invisible Salamanders Attack [DGRW19]

N,A,C

Facebook

Recipient

Moderator

7

Malicious Sender

Threat #1: Invisible Salamanders Attack [DGRW19]

N,A,C

Facebook

Recipient

Moderator

7

N,A,C

Malicious Sender

Threat #1: Invisible Salamanders Attack [DGRW19]
K1

N,A,C

Facebook

Recipient

Moderator

Abusive
Image

7

N,A,C

Malicious Sender

Threat #1: Invisible Salamanders Attack [DGRW19]
K1

N,A,C

Facebook

Recipient

Moderator

Abusive
ImageReport

7

N,A,C

Malicious Sender

Threat #1: Invisible Salamanders Attack [DGRW19]
K1

N,A,C

Facebook

Recipient

Moderator

Abusive
ImageReport

7

N,A,C

N,A,C
Malicious Sender

Threat #1: Invisible Salamanders Attack [DGRW19]
K1

K2

N,A,C

Facebook

Recipient

Moderator

Abusive
Image

Benign Image

Report

7

N,A,C

N,A,C
Malicious Sender

Threat #1: Invisible Salamanders Attack [DGRW19]
K1

K2

N,A,C

Facebook

Recipient

Moderator

Abusive
Image

Benign Image

Report

7

N,A,C

N,A,C
Malicious Sender

Threat #1: Invisible Salamanders Attack [DGRW19]
K1

K2

N,A,C

Facebook

Recipient

Moderator

Abusive
Image

Benign Image

Report

7

Multi-recipient integrity vulnerabilities also found in

• AWS Encryption SDK

• pre-release product reviewed at Google 	

N,A,C

N,A,C

[ADGKLS20]

Malicious Sender

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertexts

8

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

C1

8

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

C2

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

…

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

Security expected: one ciphertext = one guess

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

…

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

Security expected: one ciphertext = one guess Previous slide: one ciphertext = two guesses

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

…

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

Security expected: one ciphertext = one guess Previous slide: one ciphertext = two guesses

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

…

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

Security expected: one ciphertext = one guess Previous slide: one ciphertext = two guesses

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

[LGR20]: one ciphertext = up to 4096 guesses (for AES-GCM)

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

…

Threat #2: Partitioning oracle attacks [LGR20]

Malicious Client Server

password

Server uses password to
decrypt ciphertextsMalicious client wants to guess the

password by sending ciphertexts

Security expected: one ciphertext = one guess Previous slide: one ciphertext = two guesses

C1

⊥ ≠ AEAD.Dec(KDF(password),C1)

8

[LGR20]: one ciphertext = up to 4096 guesses (for AES-GCM)

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

…

Threat #2: Partitioning oracle attacks [LGR20]

9

Su
cc

es
s R

at
e

0

17.5

35

52.5

70

Number of Queries
0 5000 10000 15000 20000

k=1 (brute force) k=4091 (partitioning oracle)

C1

Malicious Client Shadowsocks
Server

⊥ ≠ AEAD.Dec(KDF(password),C1)
password

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

C3

⊥ ≠ AEAD.Dec(KDF(password),C3)

~6x increase in
password recovery

Threat #2: Partitioning oracle attacks [LGR20]

9

Su
cc

es
s R

at
e

0

17.5

35

52.5

70

Number of Queries
0 5000 10000 15000 20000

k=1 (brute force) k=4091 (partitioning oracle)

C1

Malicious Client Shadowsocks
Server

⊥ ≠ AEAD.Dec(KDF(password),C1)
password

C2

⊥ ≠ AEAD.Dec(KDF(password),C2)

C3

⊥ ≠ AEAD.Dec(KDF(password),C3)

~6x increase in
password recovery

Partitioning oracle vulnerabilities also found in

• early, non-compliant OPAQUE implementations

• other open-source libraries

Summary of Vulnerabilities

Application Attack Impact Citation

Facebook Messenger
abuse reporting

Multi-recipient integrity Makes it impossible to report
specifically crafted images.

[GLR17]

[DGRW19]

AWS Encryption SDK multi-
recipient sending

Multi-recipient integrity Can send different messages to
different recipients.

[ADGKLS20]

… … … …

Shadowsocks UDP Partitioning oracle Faster password guessing [LGR20]

Non-compliant OPAQUE
implementations

Partitioning oracle Faster password guessing [LGR20]

… … … …

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated encryption. ia.cr/2017/664

[LGR20] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks. ia.cr/2020/1491

[DGRW19] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking: From invisible salamanders to encryptment. ia.cr/2019/016

[ADGKLS20] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg. How to Abuse and Fix Authenticated Encryption Without Key
Commitment. ia.cr/2020/1456

10

https://ia.cr/2017/664
https://ia.cr/2020/1491
https://ia.cr/2019/016
https://ia.cr/2020/1456

Attacks break the most widely used AEAD schemes

11

Attacks break the most widely used AEAD schemes

11

They do not invalidate prior security analyses …

Attacks break the most widely used AEAD schemes

11

They do not invalidate prior security analyses …

… they exploit lack of key commitment

Some Proposals for Key Commitment [ADGKLS20]

12

Key hashing [ADGKLS20]:

Append CR hash H(K)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K) ‖ C

Some Proposals for Key Commitment [ADGKLS20]

12

Simple, prevents attacks

Longer ciphertexts

 Multiple primitives

+
−
−

Key hashing [ADGKLS20]:

Append CR hash H(K)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K) ‖ C

Some Proposals for Key Commitment [ADGKLS20]

12

Simple, prevents attacks

Longer ciphertexts

 Multiple primitives

+
−
−

Key hashing [ADGKLS20]:

Append CR hash H(K)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K) ‖ C

Padding zeros [ADGKLS20]:

Add plaintext redundancy,
check on decrypt

C = AEAD.Enc(K,N,A, 02λ ‖ M)

Output C

Some Proposals for Key Commitment [ADGKLS20]

12

Simple, prevents attacks

Longer ciphertexts

 Multiple primitives

+
−
−

Key hashing [ADGKLS20]:

Append CR hash H(K)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K) ‖ C

Padding zeros [ADGKLS20]:

Add plaintext redundancy,
check on decrypt

C = AEAD.Enc(K,N,A, 02λ ‖ M)

Output C

Simple, fast

Longer ciphertexts

 Only specific schemes

+
−
−

Some Proposals for Key Commitment [ADGKLS20]

12

Simple, prevents attacks

Longer ciphertexts

 Multiple primitives

+
−
−

Key hashing [ADGKLS20]:

Append CR hash H(K)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K) ‖ C

Padding zeros [ADGKLS20]:

Add plaintext redundancy,
check on decrypt

C = AEAD.Enc(K,N,A, 02λ ‖ M)

Output C

Simple, fast

Longer ciphertexts

 Only specific schemes

+
−
−

We could standardize these or other key-committing solutions

We could standardize a key-committing solution

13

We could standardize a key-committing solution

13

draft-irtf-cfrg-aead-properties-01

https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/01/

We could standardize a key-committing solution

13

draft-irtf-cfrg-aead-properties-01

https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/01/

The Third NIST Workshop on Block Cipher Modes of Operation

https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation

We could standardize a key-committing solution

13

draft-irtf-cfrg-aead-properties-01

https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/01/

The Third NIST Workshop on Block Cipher Modes of Operation

https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation

But we fear this is short-sighted

Revisiting Multi-Recipient Integrity [BT22,CR22,MLGR23]
K1

K2

Malicious Sender Ciphertext
Distributor

Recipient A

Recipient B

14

Distributor expects same plaintext received

N,A,C

N,A,C

N,A,C

If K1 = K2, both get same plaintext

Revisiting Multi-Recipient Integrity [BT22,CR22,MLGR23]
K1

K2

Malicious Sender Ciphertext
Distributor

Recipient A

Recipient B

14

Distributor expects same plaintext received

N,A,C

N,A,C

N,A,C

If K1 = K2, both get same plaintext
If K1 ≠ K2, and key commitment, one gets error

Revisiting Multi-Recipient Integrity [BT22,CR22,MLGR23]

Ciphertext
Distributor

Recipient A

Recipient B

15

Distributor expects same plaintext received

Malicious Sender

K,N1,A1

K,N2,A2

C

C

C

Revisiting Multi-Recipient Integrity [BT22,CR22,MLGR23]

Ciphertext
Distributor

Recipient A

Recipient B

15

Distributor expects same plaintext received

Malicious Sender

K,N1,A1

K,N2,A2

C

C

C

Revisiting Multi-Recipient Integrity [BT22,CR22,MLGR23]

Ciphertext
Distributor

Recipient A

Recipient B

15

Distributor expects same plaintext received

If keys are same but N and A differ,

even with key commitment, get different plaintexts

Malicious Sender

K,N1,A1

K,N2,A2

C

C

C

In-use AEAD schemes are not context committing

16

For AEAD = XXX computationally efficient to find

such that decryption

	 	

succeeds

(K1, N1 , A1) ≠ 	 (K2, N2, A2) and C

M1 = AEAD.Dec(K1 N1,A1,C)

M2 = AEAD.Dec(K2,N2,A2,C)

In-use AEAD schemes are not context committing

16

For AEAD = XXX computationally efficient to find

such that decryption

	 	

succeeds

(K1, N1 , A1) ≠ 	 (K2, N2, A2) and C

M1 = AEAD.Dec(K1 N1,A1,C)

M2 = AEAD.Dec(K2,N2,A2,C)

Context

committing

Key

committing

In-use AEAD schemes are not context committing

16

For AEAD = XXX computationally efficient to find

such that decryption

	 	

succeeds

(K1, N1 , A1) ≠ 	 (K2, N2, A2) and C

M1 = AEAD.Dec(K1 N1,A1,C)

M2 = AEAD.Dec(K2,N2,A2,C)

Large space of definitions [BT22, CR22, MLGR23]

Context

committing

Key

committing

Analogous to hash functions:

	 	 collision resistance context commitment

 preimage resistance context discovery
~
~

In-use AEAD schemes are not context committing

17

For AEAD = XXX computationally efficient to find

such that decryption

	 	

succeeds

M1 = AEAD.Dec(K1 N1,A1,C)

M2 = AEAD.Dec(K2,N2,A2,C)

XXX Key Committing
Attack?

Context
Committing
Attack?

AES-GCM [GLR17]

ChaCha20

/Poly1305

[LGR20]

AES-GCM-SIV [Sch20, LGR20]

AES-OCB3 [ADGKLS20]

AES-SIV [MLGR23]

XSalsa20

/Poly1305

[LGR20]

(K1, N1 , A1) ≠ 	 (K2, N2, A2) and C

In-use AEAD schemes are not context committing

18

For AEAD = XXX computationally efficient to find

such that decryption

	 	

succeeds

M1 = AEAD.Dec(K1 N1,A1,C)

M2 = AEAD.Dec(K2,N2,A2,C)

XXX Key Committing
Attack?

Context
Committing
Attack?

AES-GCM [GLR17] [GLR17]

ChaCha20

/Poly1305

[LGR20] [LGR20]

AES-GCM-SIV [Sch20, LGR20] [Sch20, LGR20]

AES-OCB3 [ADGKLS20] [ADGKLS20]

AES-SIV [MLGR23] [MLGR23]

XSalsa20

/Poly1305

[LGR20]
 [LGR20]

(K1, N1 , A1) ≠ 	 (K2, N2, A2) and C

In-use AEAD schemes are not context committing

19

For AEAD = XXX computationally efficient to find

such that decryption

	 	

succeeds

M1 = AEAD.Dec(K1 N1,A1,C)

M2 = AEAD.Dec(K2,N2,A2,C)

Key commitment countermeasures

don’t ensure context commitment

XXX Key Committing
Attack?

Context
Committing
Attack?

AES-GCM [GLR17] [GLR17]

ChaCha20

/Poly1305

[LGR20] [LGR20]

AES-GCM-SIV [Sch20, LGR20] [Sch20, LGR20]

AES-OCB3 [ADGKLS20] [ADGKLS20]

AES-SIV [MLGR23] [MLGR23]

XSalsa20

/Poly1305

[LGR20] [LGR20]

Padding Zeros [BH22]

Key hashing [MGLR23]

(K1, N1 , A1) ≠ 	 (K2, N2, A2) and C

Committing Encryption Timeline

20

Committing Encryption Timeline

20

Key commitment
theory

[FOR17, GLR17]

2017

Committing Encryption Timeline

20

Invisible
salamanders attack

[DGRW19]

2019

Key commitment
theory

[FOR17, GLR17]

2017

Committing Encryption Timeline

20

Partitioning oracle
attack

and

Key commitment
countermeasures

[LGR20, ADGKLS20]

2020

Invisible
salamanders attack

[DGRW19]

2019

Key commitment
theory

[FOR17, GLR17]

2017

Committing Encryption Timeline

20

Partitioning oracle
attack

and

Key commitment
countermeasures

[LGR20, ADGKLS20]

2020

Invisible
salamanders attack

[DGRW19]

2019

Key commitment
theory

[FOR17, GLR17]

2017

Context commitment
theory

[BH22,CR22,MLGR23]

2022

Committing Encryption Timeline

20

Partitioning oracle
attack

and

Key commitment
countermeasures

[LGR20, ADGKLS20]

2020

Invisible
salamanders attack

[DGRW19]

2019

Key commitment
theory

[FOR17, GLR17]

2017

Context commitment
theory

[BH22,CR22,MLGR23]

2022

???

Future

Some Proposals for Context Commitment

21

Context hashing:

Append CR hash H(K,N,A)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K,N,A) ‖ C

Some Proposals for Context Commitment

21

Simple, prevents attacks

Longer ciphertexts

 Slow for large A

 Multiple primitives

+
−
−
−

Context hashing:

Append CR hash H(K,N,A)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K,N,A) ‖ C

Some Proposals for Context Commitment

21

Simple, prevents attacks

Longer ciphertexts

 Slow for large A

 Multiple primitives

+
−
−
−

Context hashing:

Append CR hash H(K,N,A)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K,N,A) ‖ C

CTX construction [CR22]:

Append CR hash of context
and tag (saves space)

C,T = AEAD.Enc(K,N,A,M)

Output H(K,N,A,T) ‖ C

Some Proposals for Context Commitment

21

Simple, prevents attacks

Longer ciphertexts

 Slow for large A

 Multiple primitives

+
−
−
−

Context hashing:

Append CR hash H(K,N,A)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K,N,A) ‖ C

CTX construction [CR22]:

Append CR hash of context
and tag (saves space)

C,T = AEAD.Enc(K,N,A,M)

Output H(K,N,A,T) ‖ C

Simple, prevents attacks

Optimal length ciphertexts

 Slow for large A

 Multiple primitives

+
+
−
−

Some Proposals for Context Commitment

21

Simple, prevents attacks

Longer ciphertexts

 Slow for large A

 Multiple primitives

+
−
−
−

Context hashing:

Append CR hash H(K,N,A)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K,N,A) ‖ C

CTX construction [CR22]:

Append CR hash of context
and tag (saves space)

C,T = AEAD.Enc(K,N,A,M)

Output H(K,N,A,T) ‖ C

Simple, prevents attacks

Optimal length ciphertexts

 Slow for large A

 Multiple primitives

+
+
−
−

Hash-based constructions

[BDPA11, DGRW19]:

Duplex-style that use a single
pass of hash function

Init(K)

Absorb(N,A)

C = Encrypt(M)

Output Squeeze() ‖ C

Some Proposals for Context Commitment

21

Simple, prevents attacks

Longer ciphertexts

 Slow for large A

 Multiple primitives

+
−
−
−

Context hashing:

Append CR hash H(K,N,A)

to ciphertext

C = AEAD.Enc(K,N,A,M)

Output H(K,N,A) ‖ C

CTX construction [CR22]:

Append CR hash of context
and tag (saves space)

C,T = AEAD.Enc(K,N,A,M)

Output H(K,N,A,T) ‖ C

Simple, prevents attacks

Optimal length ciphertexts

 Slow for large A

 Multiple primitives

+
+
−
−

Hash-based constructions

[BDPA11, DGRW19]:

Duplex-style that use a single
pass of hash function

Init(K)

Absorb(N,A)

C = Encrypt(M)

Output Squeeze() ‖ C

Simple, single primitive

Optimal length ciphertexts

 Not parallelizable

+
+
−

OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

22

OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

22

Even-Mansour block cipher [EM97]

𝜋

V

I

I

V

𝐸(𝐼, 𝑉) = 𝜋(𝑉 ⊕ 𝐼) ⊕ 𝐼

Wide permutation
like Keccak or Ascon.

OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

22

XE/XEX inspired tweakable block cipher [R04]

Even-Mansour block cipher [EM97]

𝜋

V

I

I

V

𝐸(𝐼, 𝑉) = 𝜋(𝑉 ⊕ 𝐼) ⊕ 𝐼
~𝐸𝑇
𝐿(𝑉) = 𝐸(𝐿3, 𝑉 ⊕ Δ) ⊕ Δ

Δ = Offset(𝐿1, 𝐿2)

𝐸𝐿3

V

Δ

Δ

V

Wide permutation
like Keccak or Ascon.

OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

22

OCB inspired authenticated encryption [RBB03]

N M1

~𝐸1
𝐿

~𝐸1,𝑁
𝐿

M2

~𝐸2,𝑁
𝐿

C0 C1 C2

Checksum

~𝐸2,𝑁
𝐿

T

𝑇𝑎𝑔𝐿

XE/XEX inspired tweakable block cipher [R04]

Even-Mansour block cipher [EM97]

𝜋

V

I

I

V

𝐸(𝐼, 𝑉) = 𝜋(𝑉 ⊕ 𝐼) ⊕ 𝐼
~𝐸𝑇
𝐿(𝑉) = 𝐸(𝐿3, 𝑉 ⊕ Δ) ⊕ Δ

Δ = Offset(𝐿1, 𝐿2)

𝐸𝐿3

V

Δ

Δ

V

Wide permutation
like Keccak or Ascon.

OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

22

OCB inspired authenticated encryption [RBB03]

HN4 inspired nonce-hiding [BNT19]

N M1

~𝐸1
𝐿

~𝐸1,𝑁
𝐿

M2

~𝐸2,𝑁
𝐿

C0 C1 C2

Checksum

~𝐸2,𝑁
𝐿

T

𝑇𝑎𝑔𝐿

XE/XEX inspired tweakable block cipher [R04]

Even-Mansour block cipher [EM97]

𝜋

V

I

I

V

𝐸(𝐼, 𝑉) = 𝜋(𝑉 ⊕ 𝐼) ⊕ 𝐼
~𝐸𝑇
𝐿(𝑉) = 𝐸(𝐿3, 𝑉 ⊕ Δ) ⊕ Δ

Δ = Offset(𝐿1, 𝐿2)

𝐸𝐿3

V

Δ

Δ

V

Wide permutation
like Keccak or Ascon.

OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

22

OCB inspired authenticated encryption [RBB03]

HN4 inspired nonce-hiding [BNT19]

N M1

~𝐸1
𝐿

~𝐸1,𝑁
𝐿

M2

~𝐸2,𝑁
𝐿

C0 C1 C2

Checksum

~𝐸2,𝑁
𝐿

T

𝑇𝑎𝑔𝐿

XE/XEX inspired tweakable block cipher [R04]

Even-Mansour block cipher [EM97]

𝜋

V

I

I

V

𝐸(𝐼, 𝑉) = 𝜋(𝑉 ⊕ 𝐼) ⊕ 𝐼
~𝐸𝑇
𝐿(𝑉) = 𝐸(𝐿3, 𝑉 ⊕ Δ) ⊕ Δ

Δ = Offset(𝐿1, 𝐿2)

𝐸𝐿3

V

Δ

Δ

V

Wide permutation
like Keccak or Ascon.

Simple, single primitive

Optimal length ciphertexts

 Maximally parallelizable

+
+
+

Is context committing AEAD right for you?

23

Is context committing AEAD right for you?

23

Yes

Is context committing AEAD right for you?

1. Future-proof against potential context commitment attacks.

23

Yes

Is context committing AEAD right for you?

1. Future-proof against potential context commitment attacks.
2. Minimal performance overhead over a key committing scheme.

23

Yes

Next Steps

24

Next Steps

Build context committing AEAD schemes.

24

Next Steps

Build context committing AEAD schemes.

Standardize a few canonical context committing AEAD schemes.

24

Next Steps

Build context committing AEAD schemes.

Standardize a few canonical context committing AEAD schemes.

Deploy these few canonical context committing AEAD schemes.

24

Next Steps

Build context committing AEAD schemes.

Standardize a few canonical context committing AEAD schemes.

Deploy these few canonical context committing AEAD schemes.

See papers for lots more: ia.cr/2022/268 & ia.cr/2022/1260 & preprint.link/ec23

24

Next Steps

Build context committing AEAD schemes.

Standardize a few canonical context committing AEAD schemes.

Deploy these few canonical context committing AEAD schemes.

See papers for lots more: ia.cr/2022/268 & ia.cr/2022/1260 & preprint.link/ec23

Thank you! 💙

24

Next Steps

Build context committing AEAD schemes.

Standardize a few canonical context committing AEAD schemes.

Deploy these few canonical context committing AEAD schemes.

See papers for lots more: ia.cr/2022/268 & ia.cr/2022/1260 & preprint.link/ec23

Thank you! 💙

Emoji in figures from Noto Emoji. 

Thanks to my co-authors and the Cornell Security Seminar for feedback.

24

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudorandom
permutation. https://doi.org/10.1007/s001459900025

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A Block-Cipher Mode of Operation for Efficient
Authenticated Encryption. https://www.cs.ucdavis.edu/~rogaway/papers/ocb-full.pdf

[R04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB
and PMAC. https://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge: single-
pass authenticated encryption and other applications. ia.cr/2011/499

[FOR17] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Security of Symmetric Primitives under Incorrect
Usage of Keys. ia.cr/2017/288

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated
encryption. ia.cr/2017/664

[DGRW19] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking: From
invisible salamanders to encryptment. ia.cr/2019/016

References

25

[BNT19] Mihir Bellare, Ruth Ng, and Björn Tackmann. Nonces are Noticed: AEAD Revisited. ia.cr/2019/624

[LGR20] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks. ia.cr/2020/1491

[ADGKLS20] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg. How to
Abuse and Fix Authenticated Encryption Without Key Commitment. ia.cr/2020/1456

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing authenticated encryption. ia.cr/
2022/268

[CR22] John Chan and Phillip Rogaway. On committing authenticated-encryption. ia.cr/2022/1260

[MLGR23] Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context Discovery and Commitment
Attacks: How to Break CCM, EAX, SIV, and More. preprint.link/ec23

[BHLMR23] Mihir Bellare, Viet Tung Hoang, Julia Len, Sanketh Menda, Thomas Ristenpart. In preparation.

References

26

