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Fast Message Franking:
From Invisible Salamanders to Encryptment*
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Abstract

Message franking enables cryptographically verifiable reporting of abusive content in end-to-
end encrypted messaging. Grubbs, Lu, and Ristenpart recently formalized the needed underlying
primitive, what they call compactly committing authenticated encryption (AE), and analyzed
the security of a number of approaches. But all known secure schemes are still slow compared
to the fastest standard AE schemes. For this reason Facebook Messenger uses AES-GCM for
franking of attachments such as images or videos.

We show how to break Facebook’s attachment franking scheme: a malicious user can send
an objectionable image to a recipient but that recipient cannot report it as abuse. The core
problem stems from use of fast but non-committing AE, and so we build the fastest compactly
committing AE schemes to date. To do so we introduce a new primitive, called encryptment,
which captures the essential properties needed. We prove that, unfortunately, schemes with
performance profile similar to AES-GCM won’t work. Instead, we show how to efficiently
transform Merkle-Damgéard-style hash functions into secure encryptments, and how to efficiently
build compactly committing AE from encryptment. Ultimately our main construction allows
franking using just a single computation of SHA-256 or SHA-3. Encryptment proves useful for
a variety of other applications, such as remotely keyed AE and concealments, and our results
imply the first single-pass schemes in these settings as well.
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By now, many people have run across the Invisible Salamander
paper about the interesting property of AES-GCM, that allows
an attacker to construct a ciphertext that will decrypt with a
valid tag under two different keys, provided both keys are known
to the attacker. On some level, finding properties like this isn’t
too surprising: AES-GCM was designed to be an AEAD, and
nowhere in the AEAD definition does it state anything about
what attackers with access to the keys can do, since the usual
assumption is that attackers don’t have that access, since any
Alice-Bob-Message model would be meaningless in that scenario.
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Abstract

Authenticated encryption (AE) is used in a wide variety of
applications, potentially in settings for which it was not orig-
inally designed. Recent research tries to understand what
happens when AE is not used as prescribed by its designers.
A question given relatively little attention is whether an AE
scheme guarantees “key commitment”: ciphertext should only
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is insecure when they see a proof-of-concept exploit. Similar
efforts are deemed necessary to demonstrate the exploitability
of cryptographic algorithms such as SHA-1 [SBK17].

The vast majority of applications should default to using
authenticated encryption (AE) [BN0O, KY00], a well-studied
primitive which avoids the pitfalls of unauthenticated SKE
with relatively small performance overhead. AE schemes are
used in widely adopted protocols like TLS [Res18], standard-
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inally designed. Recent research tries to understand what
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scheme guarantees “key commitment”: ciphertext should only
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is insecure when they see a proof-of-concept exploit. Similar
efforts are deemed necessary to demonstrate the exploitability
of cryptographic algorithms such as SHA-1 [SBK17].

The vast majority of applications should default to using
authenticated encryption (AE) [BN0O, KY00], a well-studied
primitive which avoids the pitfalls of unauthenticated SKE
with relatively small performance overhead. AE schemes are
used in widely adopted protocols like TLS [Res18], standard-

In this paper we introduce partitioning oracles, a new
class of decryption error oracles which, conceptually, take
a ciphertext as input and output whether the decryption
key belongs to some known subset of keys. We introduce
the first partitioning oracles which arise when encryption
schemes are not committing with respect to their keys. We
detail novel adaptive chosen ciphertext attacks that exploit
partitioning oracles to efficiently recover passwords and de-
anonymize anonymous communications. The attacks utilize
efficient key multi-collision algorithms — a cryptanalytic
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have arisen in relatively niche applications like auction
protocols [23] or recently as an integrity issue in moderation
for encrypted messaging [22,30].

‘We introduce partitioning oracle attacks, a new type of
CCA. These are similar to previous attacks considered in
the password-authenticated key exchange (PAKE) litera-
ture [11,72,98]; we provide a unifying attack framework
that transcends PAKE and show partitioning oracle attacks
that exploit weaknesses in widely used non-committing
AEAD schemes. Briefly, a partitioning oracle arises when
an adver<arv can: (1) efficientlv craft cinhertexte that <11c-
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In-use AEAD schemes are not key committing [FOR17, GLR17]

For AEAD = XXX computationally efficient to find

K;#K, and N,A,C

such that decryption

M, = AEAD.Dec(K,,N,A,C)
M, = AEAD.Dec(K,,N,A,C)

succeeds and M, # M,



In-use AEAD schemes are not key committing [FOR17, GLR17]

For AEAD = XXX computationally efficient to find

XXX Attack Citation
K;#K, and N,A,C AES-GCM [GLR17]
ChaCha20/Poly1305 [LGR20]
such that decryption AES-GCM-SIV [Sch20, LGR20]
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For AEAD = XXX computationally efficient to find

XXX Attack Citation
K;#K, and N,A,C AES-GCM [GLR17]
ChaCha20/Poly1305 [LGR20]
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succeeds and M, # M, Attacks are fast and J

practically damaging
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Recipient Abusive

Image
’E
N,A,C
Malicious Sender Facebook
- ~~
Moderator Benign Image A

Multi-recipient integrity vulnerabilities also found in

e AWS Encryption SDK @

 pre-release product reviewed at Google [ADGKLS20]




Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts
password

v

Malicious Client Server




Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to 1
[ Malicious client wants to guess the decrypt ciphertexts

password by sending ciphertexts password

Malicious Client Server



Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

password

Malicious client wants to guess the
password by sending ciphertexts

C, v

>
1 # AEAD.Dec(KDF(password),C,)

Malicious Client Server




Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

[ Malicious client wants to guess the

password by sending ciphertexts password
C, v
>
1 # AEAD.Dec(KDF(password),C,) @
Malicious Client C, Server




Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

[ Malicious client wants to guess the

password by sending ciphertexts password
C, v
>
1 # AEAD.Dec(KDF(password),C,) @
Malicious Client C, Server

>
L # AEAD.Dec(KDF(password),C,)
<§



Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

[ Malicious client wants to guess the

password by sending ciphertexts password
C, v
>
1 # AEAD.Dec(KDF(password),C,) @
Malicious Client C, Server

>
L # AEAD.Dec(KDF(password),C,)
<§



Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

[ Malicious client wants to guess the

password by sending ciphertexts password
C, v
>
1 # AEAD.Dec(KDF(password),C,) @
Malicious Client C, Server

>
L # AEAD.Dec(KDF(password),C,)
<§

[Security expected: one ciphertext = one guess 1




Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

[ Malicious client wants to guess the

password by sending ciphertexts password
C, v
>
1 # AEAD.Dec(KDF(password),C,) @
Malicious Client C, Server

>
L # AEAD.Dec(KDF(password),C,)
<§

[Security expected: one ciphertext = one guess }[ Previous slide: one ciphertext = two guesses 1




Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

[ Malicious client wants to guess the

password by sending ciphertexts password
C, v
>
1 # AEAD.Dec(KDF(password),C,) @
Malicious Client C, Server

>
L # AEAD.Dec(KDF(password),C,)
<§

2™\
[Security expected: one ciphertext = one guess }[ Previous slide: one ciphertext = two guesses 1 &




Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

[ Malicious client wants to guess the

password by sending ciphertexts password
C, v
>
1 # AEAD.Dec(KDF(password),C,) @
Malicious Client C, Server

>
L # AEAD.Dec(KDF(password),C,)
<§

Ve

2™\
Security expected: one ciphertext = one guess }[ Previous slide: one ciphertext = two guesses 1 &

.
-

[LGR20]: one ciphertext = up to 4096 guesses (for AES-GCM) 1

-




Threat #2: Partitioning oracle attacks [LGR20]

Server uses password to
decrypt ciphertexts

[ Malicious client wants to guess the

password by sending ciphertexts password
C, v
>
1 # AEAD.Dec(KDF(password),C,) @
Malicious Client C, Server

L # AEAD.Dec(KDF(password),C,)

Ve

2™\
Security expected: one ciphertext = one guess }[ Previous slide: one ciphertext = two guesses 1 &

.
-

[LGR20]: one ciphertext = up to 4096 guesses (for AES-GCM) 1 /’H\\)

-




Threat #2: Partitioning oracle attacks [LGR20]
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Summary of Vulnerabilities

Application Attack Impact Citation
Facebook Messenger Multi-recipient integrity Makes it impossible to report [GLR17]
abuse reporting specifically crafted images. [DGRW19]
AWS Encryption SDK multi- Multi-recipient integrity Can send different messages to [ADGKLS20]
recipient sending different recipients.

Shadowsocks UDP Partitioning oracle Faster password guessing [LGR20]
Non-compliant OPAQUE Partitioning oracle Faster password guessing [LGR20]

implementations

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated encryption. ia.cr/2017/664
[LGR20] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks. ia.cr/2020/1491
[DGRW19] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking: From invisible salamanders to encryptment. ia.cr/2019/016

[ADGKLS20] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kolbl, Atul Luykx, and Sophie Schmieg. How to Abuse and Fix Authenticated Encryption Without Key
Commitment. ia.cr/2020/1456
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... they exploit lack of key commitment
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Key hashing [ADGKLS20]: C = AEAD.Enc(K,N,A,M) + Simple, prevents attacks
Append CR hash H(K) Output H(K) || C — Longer ciphertexts
to ciphertext — Multiple primitives

Padding zeros [ADGKLS20]: C= AEAD.Enc(K,N,A, 02\ || M) + Simple, fast
Add plaintext redundancy, = Output C — Longer ciphertexts
check on decrypt — Only specific schemes

[ We could standardize these or other key-committing solutions }
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4.3.3. Key commitment

Definition. An AEAD algorithm guarantees that it is difficult to find
a tuple of the nonce, associated data, and ciphertext such that it
can be decrypted correctly with more than one key.

Synonyms. Key-robustness, key collision resistance.

Further reading. [FOR17], [LGR21], [GLR17]

draft-irtf-cfrg-aead-properties-01
https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/01/
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We could standardize a key-committing solution

4.3.3. Key commitment

Definition. An AEAD algorithm guarantees that it is difficult to find
a tuple of the nonce, associated data, and ciphertext such that it

can be decrypted correctly with more than one key.

Synonyms. Key-robustness, key collision resistance. | Topics for discussion include:

Further reading. [FOR17], [LGR21], [GLR17] e The security and efficiency of current NIST modes

o Additional security features (e.g., misuse-resistance, key
draft-irtf-cfrg-aead-properties-01

_ _ _ commitment, etc.) that would be desirable in a new
https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/01/

encryption technique

The Third NIST Workshop on Block Cipher Modes of Operation
https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation
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We could standardize a key-committing solution

4.3.3. Key commitment

Definition. An AEAD algorithm guarantees that it is difficult to find
a tuple of the nonce, associated data, and ciphertext such that it
can be decrypted correctly with more than one key.

Synonyms. Key-robust

But we fear this is short-sighted

Further reading. [FOR NIST modes

o Additional security features (e.g., misuse-resistance, key
draft-irtf-cfrg-aead-properties-01

) _ _ commitment, etc.) that would be desirable in a new
https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/01/

encryption technique

The Third NIST Workshop on Block Cipher Modes of Operation
https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation
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Revisiting Multi-Recipient Integrity [BT22,CR22,MLGR23]

A
&
| ReC|p|ent A

i‘ L
E Distributor expects same plaintext received
N,A,C

)
Malicious Sender Ciphertext

Distributor ‘ |
ReC|p|ent B 5

It K, = K,, both get same plaintext
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| Recipient A

Malicious Sender
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Distributor expects same plaintext received

N,A,C

Clphertext
Distributor

45 —x @

Recipient B

K,

It K, = K,, both get same plalntext
It K, # K,, and key commitment, one gets error
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Revisiting Multi-Recipient Integrity [BT22,CR22,MLGR23]

K,N,,A,
| ’—i_ "
Recipient A

= m : C é
r « ﬁ Distributor expects same plaintext received

C
Malicious Sender Ciphertext
Distributor
K,N,,A, ) L

ReC|p|ent B
If keys are same but N and A differ, -5
even with key commitment, get different plaintexts



In-use AEAD schemes are not context committing

For AEAD = XXX computationally efficient to find
(K, N, A) 2 (K,N,,A) and C
such that decryption

M, = AEAD.Dec(K, N,,A,,C)
M, = AEAD.Dec(K,,N,,A,,C)

succeeds
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In-use AEAD schemes are not context committing

For AEAD = XXX computationally efficient to find
(K, N, A) 2 (K,N,,A) and C

such that decryption

Context —p | KEY
committing 4* committing

M, = AEAD.Dec(K, N,,A,,C)

M, = AEAD.Dec(K,,N,,A,,C)

succeeds

Large space of definitions [BT22, CR22, MLGR23]

Analogous to hash functions:
collision resistance ~ context commitment
preimage resistance ~ context discovery



In-use AEAD schemes are not context committing

For AEAD = XXX computationally efficient to find
(K, N, A) 2 (K,N,,A) and C
such that decryption

M, = AEAD.Dec(K, N,,A,,C)
M, = AEAD.Dec(K,,N,,A,,C)

succeeds

XXX Key Committing Context
Attack? Committing

Attack?

AES-GCM [GLR17]

ChaCha20 [LGR20]

/Poly1305

AES-GCM-SIV  [Sch20, LGR20]

AES-OCB3 [ADGKLS20]

AES-SIV [MLGR23]

XSalsa20 [LGR20]

/Poly1305
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In-use AEAD schemes are not context committing

For AEAD = XXX computationally efficient to find

(K, N, A) 2 (K,N,,A) and C
such that decryption

M, = AEAD.Dec(K, N,,A,,C)
M, = AEAD.Dec(K,,N,,A,,C)

succeeds

Key commitment countermeasures
don’t ensure context commitment

1

XXX Key Committing Context

Attack? Committing
Attack?

AES-GCM [GLR17] [GLR17]

ChaCha20 [LGR20] [LGR20]

/Poly1305

AES-GCM-SIV  [Sch20, LGR20]  [Sch20, LGR20]

AES-OCB3 [ADGKLS20] [ADGKLS20]

AES-SIV [MLGR23] [MLGR23]

XSalsa20 [LGR20] [LGR20]

/Poly1305

Padding Zeros [BH22]

Key hashing [MGLR23]
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Committing Encryption Timeline

Partitioning oracle

attack

and
Key commitment Invisible Key commitment
theory salamanders attack countermeasures
[FOR17, GLR17] [DGRW19] [LGR20, ADGKLS20]

Context commitment

theory
[BH22,CR22,MLGR23]

| | |
2017 2019 2020

I
2022

___________ |______

Future
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Some Proposals for Context Commitment

Context hashing: C = AEAD.Enc(K,N,A,M)
Append CR hash H(K,N,A) Output H(K,N,A) || C
to ciphertext
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Some Proposals for Context Commitment

Context hashing:
Append CR hash H(K,N,A)
to ciphertext

CTX construction [CR22]:
Append CR hash of context
and tag (saves space)

Hash-based constructions
[BDPA11l, DGRW19]:
Duplex-style that use a single
pass of hash function

C = AEAD.Enc(K,N,A,M)
Output H(K,N,A) || C

C,T = AEAD.Enc(K,N,A,M)
Output H(K,N,A,T) || C

Init(K)

Absorb(N,A)

C = Encrypt(M)
Output Squeeze() || C

+ Simple, prevents attacks
— Longer ciphertexts

— Slow for large A

— Multiple primitives

+ Simple, prevents attacks
+ Optimal length ciphertexts
— Slow for large A

— Multiple primitives
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Some Proposals for Context Commitment

Context hashing:
Append CR hash H(K,N,A)
to ciphertext

CTX construction [CR22]:
Append CR hash of context
and tag (saves space)

Hash-based constructions
[BDPA11l, DGRW19]:
Duplex-style that use a single
pass of hash function

C = AEAD.Enc(K,N,A,M)
Output H(K,N,A) || C

C,T = AEAD.Enc(K,N,A,M)
Output H(K,N,A,T) || C

Init(K)

Absorb(N,A)

C = Encrypt(M)
Output Squeeze() || C

+ Simple, prevents attacks
— Longer ciphertexts

— Slow for large A

— Multiple primitives

+ Simple, prevents attacks
+ Optimal length ciphertexts
— Slow for large A

— Multiple primitives

+ Simple, single primitive
+ Optimal length ciphertexts
— Not parallelizable
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OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

22



OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]
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Wide permutation ‘ :
like Keccak or Ascon.
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v
\"

ELV)=aVeI)®I

Even-Mansour block cipher [EMIS7]
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OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

\" \"

Wide permutation ‘ : ‘ A
like Keccak or Ascon.

N,

\" \"
EQV)=a(V&D®I  E(V)=E(L, V®A) @A

Even-Mansour block cipher [EMIS7]

XE/XEX inspired tweakable block cipher [R04]
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OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

Vv Vv
Wide permutation ‘ : Checksum

like Keccak or Ascon. ’ ﬂ m E E

T

v
\"

ELV)=z(VeD®I  EV)= E(L3, Vo A) @A

Even-Mansour block cipher [EMIS7] OCB inspired authenticated encryption [RBBO3]

XE/XEX inspired tweakable block cipher [R04]
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OCH: Fast, Parallelizable Context Committing AEAD [BHLMR23]

Vv \'}
Wide permutation ‘ : CheCks”m
like Keccak or Ascon. i E % E
I
Vv v
~T T
EULV)=za(VeI1)DI E (V)= E(L3, Ve A)®A
Even-Mansour block cipher [EMIS7] OCB inspired authenticated encryption [RBBO3]

XE/XEX inspired tweakable block cipher [R04] HN4 inspired nonce-hiding [BNT19]

+ Simple, single primitive
+ Optimal length ciphertexts

+ Maximally parallelizable 22
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Is context committing AEAD right for you?

Yes

1. Future-proof against potential context commitment attacks.

2. Minimal performance overhead over a key committing scheme.
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Build context committing AEAD schemes.
Standardize a few canonical context committing AEAD schemes.
Deploy these few canonical context committing AEAD schemes.

See papers for lots more: ia.cr/2022/268 & ia.cr/2022/1260 & preprint.link/ec23

Thank you! @@
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Next Steps

Build context committing AEAD schemes.
Standardize a few canonical context committing AEAD schemes.
Deploy these few canonical context committing AEAD schemes.

See papers for lots more: ia.cr/2022/268 & ia.cr/2022/1260 & preprint.link/ec23

Thank you! @@

Emoji in figures from Noto Emoji.

Thanks to my co-authors and the Cornell Security Seminar for feedback.
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