Building the Next Generation of Authenticated Encryption

Mihir Bellare, Shay Gueron, Viet Tung Hoang, Julia Len, Sanketh Menda, and Thomas Ristenpart

Authenticated Encryption with Associated Data

Scheme **AEAD** Key K Nonce N Associated data A Message M $C \leftarrow AEAD.Enc(K, N, A, M)$

Security Goals

- Confidentiality
- Authenticity

#RWC2024

1 – Performance challenges

#RWC2024

Performance Goals

- Streamable
- Fast with AES-NI hardware

1 – Performance challenges

Scaling to modern workloads

- AWS: 2³² messages in 2 seconds
- AES-GCM can encrypt < 2³² messages per key (for random nonces)

Performance Goals

- Streamable
- Fast with AES-NI hardware
- Scalability (2⁹⁶ encryptions per key for random nonces)

1 – Performance challenges

Performance on lightweight devices

- No AES instructions, so AES is too slow
- NIST Lightweight competition

Performance Goals

- Streamable
- Fast with AES-NI hardware
- Scalability (2⁹⁶ encryptions per key for random nonces)
- Fast on lightweight devices

Scheme AEAD Key K Nonce N Associated data A Message M $C \leftarrow AEAD.Enc(K, N, A, M)$

Security Goals

- Confidentiality
- Authenticity

• Extract keys from Samsung TrustZone [SRW USENIX Sec'22]

Scheme **AEAD** Key K Nonce **N** Associated data **A** Message M $C \leftarrow AEAD.Enc(K, N, A, M)$

Security Goals

- Confidentiality
- Authenticity
- Nonce-misuse resistance [RS EC06]
- **Nonce hiding** [BNT Crypto19]

- Can reveal information about the session; e.g., counters.
- Can reveal information about the sender; e.g., machine identifiers
- Can be plain bad choices; e.g., hash of the message

#RWC2024

Privacy leaks: [BNT Crypto'19]

Scheme AEAD	
Key K	
Nonce N	
Associated data A	
Message M	
C ← AEAD.Enc(K, N, A, M)	

Security Goals

- Confidentiality
- Authenticity
- Nonce-misuse resistance [RS EC06]
- **Nonce hiding** [BNT Crypto19]
- **Context commitment** [BH EC22]

Real world attacks:

 Abuse reporting in Facebook Messenger [DGRW CRYPTO'18] Envelope encryption in AWS encryption SDK [ADGKLS USENIX Sec'22]

Scheme **AEAD** Key K Nonce **N** Associated data **A** Message M $C \leftarrow AEAD.Enc(K, N, A, M)$

Security Goals

- Confidentiality
- Authenticity
- Nonce-misuse resistance [RS EC06]
- **Nonce hiding** [BNT Crypto19]
- **Context commitment** [BH EC22]
- **Robustness** [HKR EC15]

Real world interest:

Output should be not much longer than the message

• Android encrypts file contents with XTS or Adiantum [Android 14] • NIST wants to standardize an "accordion cipher mode."

Performance and security always in some level of tension!

#RWC2024

Performance Goals

Streamable

Scale to modern clouds

Fast on lightweight

Fast on AES-NI

Performance and security always in some level of tension!

Performance and security always in some level of tension!

#RWC2024

Nonce MR

AES-GCM-SIV

Performance and security always in some level of tension!

Performance and security always in some level of tension!

context commitment at high speeds.

#RWC2024

Setting nickname: **Streamable** Nonce MR Robust Streamable (lightweight) Nonce MR (lightweight) **Robust (lightweight)**

• • •

Performance and security always in some level of tension!

#RWC2024

Setting nickname:

2. How would developers pick the appropriate one?

eight)

Current AEADs don't meet all our goals

We can't have one do-everything AEAD

We need many new AEAD schemes... ...and an easy way to pick the right one

Our vision for next generation AEAD

New suite of AEAD schemes targeting streamable, **nonce-MR**, and **robust** AEAD settings

- Context committing
- Nonce-hiding supported

AEAD as modes of operation of cryptographic permutation(s)

- Builds off permutation-based cryptography [Keccak Team]
- Many great permutations, some leveraging AES-NI
- Wider block sizes than AES-128
- Perms good for both lightweight and desktop

Flexible AEAD abstraction that combines different modes to make it easier to use them securely

#RWC2024

Keccak (n = 1600, 800,...) Ascon (n = 320)Simpira (n = 256, 512,...) Areion (n = 256, 512)

Current approach leads to complex landscape

#RWC2024

Increasing complexity, lots of components

Developers have to pick schemes and parameters

If decrypt with wrong scheme or key, no security guarantees

A new approach: Flexible AEAD

A new approach: Flexible AEAD

A new approach: Flexible AEAD

#RWC2024

"Diamond strategy":

Reduces implementation and analysis complexity

#RWC2024

Tweakable EM [CLS 2015]

OCT tweakable blockcipher

- Specially designed, fast almost XOR universal H
- Formal security analysis

OCH: Committing OCB3-inspired AEAD

"OCB with Hashing"

Simplified view: OCT used in OCB3-like mode

> **Context committing** and nonce hiding

Fast, streamable scheme

GCH: Drop-in for GCM

"GCM with Hashing"

AD

CTR mode using Even-Mansour: key stream precomputable

Can leverage AES-NI and **PCLMULQDQ-NI** pipelining

Fast, streamable scheme

CIV: Committing nonce-misuse resistance

"Committing SIV"

Summary: our vision for next generation AEAD

New suite of permutation-based AEAD schemes targeting streamable, nonce-MR, and robust AEAD settings

- Context committing
- Nonce-hiding supported
- Performant

Flexible AEAD abstraction that combines different modes to make it easier to use them securely

Please reach out: snkth.com

#RWC2024

Working on new robust AEAD

