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Standardized 
1. AES-GCM 
2. ChaCha20/Poly1305 
3. AES-GCM-SIV 

Provably Secure 
1. Confidentiality 
2. Authenticity

Meddler-in-the-middle

Can observe and manipulate.

Shared out of band.
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These attacks work in new threat models!
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But malicious sender can arrange for different plaintexts to be received!

Distributor expects same plaintext received

N,A,C 
N,A,C

N,A,C 

Red text indicates attacker controlled.

Sobbing indicates unintended behavior.
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For AEAD = XXX computationally efficient to find  

  K1 ≠ K2    and    N, A, C 

such that decryption 
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XXX Attack Citation
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AES-GCM-SIV [Sch20, LGR20]
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Attacks are fast and  
practically damaging
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Multi-recipient integrity vulnerabilities also found in  
• AWS Encryption SDK 
• pre-release product reviewed at Google       

N,A,C

N,A,C

[ADGKLS20]

Malicious Sender
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Partitioning oracle vulnerabilities also found in  
• early, non-compliant OPAQUE implementations 
• other open-source libraries



Summary of Vulnerabilities

Application Attack Impact Citation

Facebook Messenger 
abuse reporting

Multi-recipient integrity Makes it impossible to report 
specifically crafted images.

[GLR17] 
[DGRW19]

AWS Encryption SDK multi-
recipient sending

Multi-recipient integrity Can send different messages to 
different recipients.

[ADGKLS20]

… … … …

Shadowsocks UDP Partitioning oracle Faster password guessing [LGR20]

Non-compliant OPAQUE 
implementations

Partitioning oracle Faster password guessing [LGR20]

… … … …

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated encryption. ia.cr/2017/664  
[LGR20] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks. ia.cr/2020/1491 
[DGRW19] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking: From invisible salamanders to encryptment. ia.cr/2019/016  
[ADGKLS20] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg. How to Abuse and Fix Authenticated Encryption Without Key 
Commitment. ia.cr/2020/1456
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… they exploit lack of key commitment
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Key hashing [ADGKLS20]: 
Append CR hash H(K)  
to ciphertext

C = AEAD.Enc(K,N,A,M) 
Output H(K) ‖ C

Padding zeros [ADGKLS20]: 
Add plaintext redundancy, 
check on decrypt

C = AEAD.Enc(K,N,A, 02λ ‖ M) 
Output C

Simple, fast 
Longer ciphertexts 

 Only specific schemes

+ 
− 
−

We could standardize these or other key-committing solutions
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draft-irtf-cfrg-aead-properties-01 
https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/01/

The Third NIST Workshop on Block Cipher Modes of Operation 
https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation

But we fear this is short-sighted 
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Revisiting Multi-Recipient Integrity [BT22,CR22,MLGR23]

Ciphertext 
Distributor

Recipient A

Recipient B

15

Distributor expects same plaintext received

If keys are same but N and A differ, 
even with key commitment, get different plaintexts

Malicious Sender

K,N1,A1

K,N2,A2

C 
C

C 
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For AEAD = XXX computationally efficient to find  

such that decryption 

   

succeeds

(K1, N1 , A1)    ≠   (K2, N2, A2)     and   C

M1  = AEAD.Dec(K1 N1,A1,C)             
M2  = AEAD.Dec(K2,N2,A2,C)

Large space of definitions [BT22, CR22, MLGR23]

Context  
committing

Key  
committing

Analogous to hash functions: 
  collision resistance  context commitment 

     preimage resistance  context discovery
~
~
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For AEAD = XXX computationally efficient to find  

such that decryption 

   

succeeds

M1  = AEAD.Dec(K1 N1,A1,C)             
M2  = AEAD.Dec(K2,N2,A2,C)

Key commitment countermeasures  
don’t ensure context commitment

XXX Key Committing 
Attack?

Context 
Committing 
Attack?

AES-GCM [GLR17] [GLR17]

ChaCha20 
/Poly1305

[LGR20] [LGR20]

AES-GCM-SIV [Sch20, LGR20] [Sch20, LGR20]

AES-OCB3 [ADGKLS20] [ADGKLS20]

AES-SIV [MLGR23] [MLGR23]

XSalsa20 
/Poly1305

[LGR20] [LGR20]

Padding Zeros [BH22]

Key hashing [MGLR23]

(K1, N1 , A1)    ≠   (K2, N2, A2)     and   C
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Emoji in figures from Noto Emoji. 

Thanks to my co-authors and the Cornell Security Seminar for feedback.
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