
The Third NIST Workshop on Block Cipher Modes of Operation 2023

Sanketh Menda, Julia Len, Viet Tung Hoang, Mihir Bellare, and Thomas Ristenpart

Flexible Authenticated Encryption

One scheme to rule them all?

2

???

One scheme to rule them all?

2

???
Fast on

AES-NI servers

One scheme to rule them all?

2

???
Fast on

AES-NI servers Lightweight

One scheme to rule them all?

2

???
Fast on

AES-NI servers Lightweight

Incompatible

One scheme to rule them all?

2

???

Nonce misuse
resistant

Fast on
AES-NI servers Lightweight

Incompatible

One scheme to rule them all?

2

???

Nonce misuse
resistant Online

Fast on
AES-NI servers Lightweight

Incompatible

One scheme to rule them all?

2

???

Nonce misuse
resistant Online

Incompatible

Fast on
AES-NI servers Lightweight

Incompatible

One scheme to rule them all?

2

???

Nonce misuse
resistant Online

Robust

Incompatible

Fast on
AES-NI servers Lightweight

Incompatible

One scheme to rule them all?

2

???

Nonce misuse
resistant Online

Robust Fast

Incompatible

Fast on
AES-NI servers Lightweight

Incompatible

One scheme to rule them all?

2

???

Nonce misuse
resistant Online

Robust Fast

Incompatible

Incompatible

Fast on
AES-NI servers Lightweight

Incompatible

One scheme to rule them all?

2

???

Nonce misuse
resistant Online

Robust Fast

Incompatible

Incompatible

Fast on
AES-NI servers Lightweight

Incompatible

One scheme to rule them all?

2

???

Nonce misuse
resistant Online

Robust Fast

Incompatible

Incompatible

Applications are asking for
more features.

We cannot build one scheme
with all these features.

But these features are
incompatible.

Fast on
AES-NI servers Lightweight

Incompatible

Lots of different schemes

3

Target
hardware

Misuse
resistant Robust

AES—GCM AES-NI ❌ ❌

AES-GCM-SIV AES-NI ✅ ❌

Ascon Lightweight ❌ ❌

AES-AEZ AES-NI ✅ ✅

Lots of different schemes

3

Each of these schemes supports a
different feature set.

Only getting more complicated.
Ascon-SIV? Ascon-AEZ?

Up to developers to pick
the most appropriate scheme.

Target
hardware

Misuse
resistant Robust

AES—GCM AES-NI ❌ ❌

AES-GCM-SIV AES-NI ✅ ❌

Ascon Lightweight ❌ ❌

AES-AEZ AES-NI ✅ ✅

Designing many different schemes scales poorly!

4
Subset of folders in https://github.com/openssl/openssl/tree/219bd6ac7061c40bd24f896f8652994d62d109de/crypto

https://github.com/openssl/openssl/tree/219bd6ac7061c40bd24f896f8652994d62d109de/crypto

Designing many different schemes scales poorly!

4
Subset of folders in https://github.com/openssl/openssl/tree/219bd6ac7061c40bd24f896f8652994d62d109de/crypto

Libraries are going to get even
more complicated.

Need to write a new standard
for each new scheme.

Need to analyze each scheme
independently.

https://github.com/openssl/openssl/tree/219bd6ac7061c40bd24f896f8652994d62d109de/crypto

Choosing an AEAD in BoringSSL

auto aead = EVP_aead_aes_128_gcm();

/// Or AES-GCM-SIV or XChaCha20/Poly1305 or CTR-HMAC or

auto ctx = EVP_AEAD_CTX_new(aead, key, tag_len);

EVP_AEAD_CTX_seal(ctx, out, nonce, in, ad); /// Encryption

EVP_AEAD_CTX_open(ctx, out, nonce, in, ad); /// Decryption

(Slightly simplified)

5

Goals for Flexible AEAD

6

Goals for Flexible AEAD

6

A. Minimize library complexity.

Goals for Flexible AEAD

6

A. Minimize library complexity.

B. Simplify analysis.

Goals for Flexible AEAD

6

A. Minimize library complexity.

B. Simplify analysis.

C. Easy-to-use APIs.

Real world AEAD implementations

7

AES-GCM

AES-GCM-SIV

Ascon

AES-AEZ

Application Library

GHASH

AES

Ascon

Real world AEAD implementations

8

AES-GCM

AES-GCM-SIV

Ascon

AES-AEZ

Application Library

GHASH

AES

Ascon

Real world AEAD implementations

8

Applications use libraries not
standalone schemes.

Applications use many AEAD
schemes, not just the one scheme.

Libraries implement schemes using
common components.

AES-GCM

AES-GCM-SIV

Ascon

AES-AEZ

Application Library

GHASH

AES

Ascon

Formalizing real world AEAD implementations

9

NMR

MR

Lightweight

Robust

Application Flex
AEAD

PRF

Cipher

Perm

Formalizing real world AEAD implementations

9

Reduce the number
of components.

Modularly analyze
the components.

Misuse resistant APIs
and safe defaults.

NMR

MR

Lightweight

Robust

Application Flex
AEAD

PRF

Cipher

Perm

Choosing an AEAD with Flexible AEAD

auto config = { mr: true, rob: false, hardware: aes-ni };

auto aead = aead_from_config(config);

auto ctx = EVP_AEAD_CTX_new(aead, key, tag_len);

EVP_AEAD_CTX_seal(ctx, out, nonce, in, ad); /// Encryption

EVP_AEAD_CTX_open(ctx, out, nonce, in, ad); /// Decryption

(Slightly simplified, reimagined from BoringSSL)

10

What is a configuration?

11

config.nonce_hiding ✅ ❌

config.misuse_resistance ✅ ❌

config.key_length 128 256

config.target_hardware AES-NI Lightweight

⠇ ⠇ ⠇

What is a configuration?

11

config.nonce_hiding ✅ ❌

config.misuse_resistance ✅ ❌

config.key_length 128 256

config.target_hardware AES-NI Lightweight

⠇ ⠇ ⠇

Encodes desired features as a dictionary.

Default to safer choices.

Tooling to generate configs.

Tooling to verify configs.

Session Key

Implementing configurations

12

config

CR
KDFkey

session_ad

config

subkey

Session key encodes the config and a CR-KDF
of the key, config, and session AD.

Supports session ADs by default.

Can safely reuse key material
across configs and sessions.

The session key is not exportable.

Gracefully handles broken configs and leaked keys

13

config 1

Session Key 1

subkey 1

config 2

Session Key 2

subkey 2

CR-KDF CR-KDF

key

Gracefully handles broken configs and leaked keys

13

config 1

Session Key 1

subkey 1

config 2

Session Key 2

subkey 2

CR-KDF CR-KDF

key

config 1

Session Key 1

subkey 1

config 2

Session Key 2

subkey 2

CR-KDF CR-KDF

key

Public permutations: a natural starting point

14

We can build all of symmetric
cryptography from a permutation.

Public permutations: a natural starting point

14

We can build all of symmetric
cryptography from a permutation.

SHA3 and Ascon
are based on permutations.

Public permutations: a natural starting point

14

We can build all of symmetric
cryptography from a permutation.

SHA3 and Ascon
are based on permutations.

Recent work on building permutations
using AES-NI instructions.

ia.cr/2023/794

ia.cr/2016/122

ia.cr/2016/098

https://ia.cr/2023/794
https://ia.cr/2016/098
https://ia.cr/2016/122

CIV: SIV-inspired MR context committing AEAD

15

Ciphertext

MessageAssociated Data

CR-PRF

PRF
Subkey1

Subkey2
CTR-Encrypt

Subkey3

Synthetic IV

Tag

Build PRF, CR-PRF, and CTR from an
underlying permutation.

Context committing
and nonce misuse resistant.

Fast, competitive with AES-based
misuse resistant schemes.

OCH: OCB3-inspired NMR context committing AEAD

16

Nonce

EK1[0] EK1[1,N] EK1[2,N]

Msg[1] Msg[2] Checksum

Ctxt[1] Ctxt[2] Ctxt[3]

CR-PRFK2

AD

Tag

Build TBC and CR-PRF from an
underlying permutation.

Context committing
and nonce hiding.

Fast, competitive with
AES-based AEAD schemes.

Len, Menda, Hoang, Bellare, and Ristenpart. The OCH Context-Committing AEAD Algorithm. Forthcoming.

Next Steps

17

Our Suggestion

NMR

MR

Lightweight

ROB

Application Flex
AEAD

PRF

Perm1

Perm2

What do y’all think of this?

Robust AEAD?
Compactly committing AEAD?

API design improvements?
Cross-language challenges?

Reach out!

snkth.com

http://snkth.com

